Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Lu You ${ }^{\text {a,b }}$ and Hai-Liang Zhu ${ }^{\text {a,b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.063$
$w R$ factor $=0.169$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Bis(2-furylmethylidene)-3,4,5,6-tetrahydro-pyrimidin-2(1H)-one

The title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, possesses C_{s} symmetry, with the central CH_{2} and $\mathrm{C}=\mathrm{O}$ atoms of the tetrahydropyrimidin2 -one group lying on the mirror plane. The molecule is bowshaped, with two symmetry-related intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the crystal structure, the molecules stack along the a axis and there are no short intermolecular contacts.

Comment

Furan derivatives have been of great interest for many years. These compounds play an important role in the development of chemistry related to sterilization and enzymatic reactions. In order to investigate the crystal structure of furan derivatives, we report here the structure of a new compound, (I) (Fig. 1). The molecule has C_{s} symmetry, atoms $\mathrm{C} 8, \mathrm{C} 6$ and O 2 lying on a mirror plane. The bond lengths and angles are in the normal ranges. The molecule is bow-shaped, with two symmetry-related intramolecular $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ hydrogen bonds (see Table 1 for details). The dihedral angle between the two furan rings is $16.2(4)^{\circ}$. The torsion angles $\mathrm{C} 1-\mathrm{C} 5-$ $\mathrm{N} 1-\mathrm{C} 6, \quad \mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 7$ and $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ are -174.6 (3), 2.9 (3) and 161.5 (3) ${ }^{\circ}$, respectively. Atom C8 deviates from the plane defined by atoms $\mathrm{N} 1, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{C} 7^{\mathrm{i}}$ and C 7 by 0.628 (3) \AA [symmetry code: (i) $x, \frac{1}{2}-y, z$]. As a result of the conjugation through the double bonds, $\mathrm{C} 5=\mathrm{N} 1$ and $\mathrm{C} 6=\mathrm{O} 2$, the furan ring and atoms $\mathrm{C} 5, \mathrm{~N} 1, \mathrm{C} 6$ and O 2 are essentially coplanar [mean deviation from the overall plane is 0.043 (4) A]. The dihedral angle between the furan ring and the plane defined by atoms $\mathrm{N} 1, \mathrm{~N} 1^{\mathrm{i}}, \mathrm{C} 7^{\mathrm{i}}$ and C 7 is $13.6(4)^{\circ}$.

(I)

Figure 1
The structure of the title compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 9 July 2004 Accepted 12 July 2004 Online 17 July 2004

Figure 2
The crystal packing of the title compound, (I), viewed along the a axis.

In the crystal structure, the molecules stack along the a axis with no short molecular contacts ($<3.2 \AA$) (see Fig. 2).

Experimental

Furaldehyde and 1,3-diaminopropane are available commercially (Aldrich) and were used without further purification. Furaldehyde ($0.2 \mathrm{mmol}, 19.2 \mathrm{mg}$) and 1,3-diaminopropane ($0.1 \mathrm{mmol}, 7.4 \mathrm{mg}$) were dissolved in $\mathrm{MeOH}(5 \mathrm{ml})$. The mixture was stirred for 10 min
and then transferred to a stainless steel bomb, which was sealed, heated at 423 K for 12 h , and cooled gradually to room temperature. Yellow block-shaped crystals of the title compound were collected, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl_{2} (yield 71.2%). Analysis found: $\mathrm{C} 64.9, \mathrm{H}$ 5.5, N 10.9%; calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 65.1, H $5.5, \mathrm{~N} 10.8 \%$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$

$M_{r}=258.27$
Orthorhombic, Pnma
$a=7.725$ (5) \AA
$b=15.670(9) \AA$
$c=10.342$ (6) \AA
$V=1251.9(13) \AA^{3}$
$Z=4$
$D_{x}=1.370 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.965, T_{\text {max }}=0.990$
5987 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.170$
$S=0.91$
Mo $K \alpha$ radiation
Cell parameters from 812
reflections
$\theta=2.3-18.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.37 \times 0.33 \times 0.10 \mathrm{~mm}$

1151 reflections
91 parameters

1151 independent reflections 619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.086$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-18 \rightarrow 14$
$l=-12 \rightarrow 11$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0945 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$	0.93	2.38	$2.755(4)$	104

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

